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Abstract

A direct numerical simulation code for flow over a droplet, which rises freely, deforms in shape, and dissolves into a

continuous phase, was developed. A two-phase flow field was discretised by a cell-centred arbitrary Lagrangian–Eule-

rian finite volume formulation by using three-dimensional hybrid unstructured meshes, which consist of triangular

prisms near interface for the resolution of viscous boundary layer and tetrahedrons in the other part. Since mass bound-

ary layer is much thinner than that of momentum for high Schmidt number problems, very-thin-layer cells are gener-

ated within one layer of the prisms attached to the interface only for solving mass transfer. This can be claimed as a

novelty of the present simulation method. From the simulation results, the mechanisms of shape deformation and/or

oscillation, trajectory morphology, and vortex shedding are elucidated and correlated to mass transfer at moderately

high Reynolds number.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Droplet flows with mass transfer are very important in industrial applications. There are also numer-

ous problems about the dynamics of moving interfaces in two-phase flows, such as oil tank sloshing,

capillary and density current flow, and atomising droplet jets. Numerical methods for predicting inter-
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face positions are categorised into two main approaches, i.e., front-capturing and front-tracking meth-

ods. In the former approach, the location of interface is marked by a scalar-indicator function.

Cell-wise segments are reconstructed by this scalar function to form interfaces at every time step of

the computation. As the scalar function, we have the volume of fluid (VOF) [1], the marker density

function (MDF) [2], and the level set method [3]. Sato et al. [4] simulated a droplet with mass disso-
lution from its interface by solving a transport equation of the MDF in orthogonal grids. Puckett et al.

[5] addressed a drawback of the front-capturing, namely, how to ensure the preservation of the clear

interface position and of the accurate conservation of mass. There have been several attempts to over-

come this problem, such as Chang et al. [6] by coupling the level set formulation to the flow-governing

equation and by extending the level set function to introduce its re-initialisation, Sussman et al. [7] by

imposing a new constraint for improving the accuracy of the interface thickness, Raad et al. [8] by

using adaptive fine grid resolution called ‘‘micro cells’’ near the interface in their rectangular grids,

Ubbink and Issa [9] by adaptive combination of high resolution discretisation schemes in unstructured
mesh, and Tomiyama et al. [10] by the cubic-interpolated propagation (CIP) scheme for the transport

of the volume fraction in micro regular cells.

In the front-tracking method, the interface is tracked explicitly by marker particles in a Lagrangian way.

The historical free-surface tracking technique was developed by Harlow and Welch [11], which is called the

marker-and-cell (MAC) method and has lead to many applications in various engineering fields. Unverdi

and Tryggvason [12] and Tryggvason et al. [13] developed a front-tracking method for bubble/droplet

flows, in which the interface is expressed by unstructured surface mesh connecting the marker particles.

Agresar et al. [14] modified the two-dimensional version of this method in adaptive refined grids near
the interface. Sato and Richardson [15] simulated two-dimensional moving fronts of a polymeric liquid

by generating fringe finite-elements in the mesh that contains a front segment. Interestingly, Enright

et al. [16] invented the particle level set method by the hybrid of front-capturing and front-tracking methods

to rebuild the level set by the marker particles in poorly resolved regions. Merit and demerit of the methods

are the avoidance of numerical diffusion in identifying interface position and the difficulties in coping with

merging and breaking-up of the fluid mass, respectively.

At the region where the Schmidt number is greater than unity, mass boundary layer becomes thinner

than that of momentum. For high Schmidt number problems about a droplet, even the methods with fine
cells generated near the interface, such as [8–10,14,15], have a limitation in resolving the thin boundary

layer. It seems that interface-fitted grids with the arbitrary Lagrangian–Eulerian (ALE) description, which

are categorised in the front-tracking method, is the only way for this purpose, because the large gradient of

mass concentration near the interface is efficiently resolved by adjusting the size of interface-fitted meshes,

though such grids can hardly follow large deformation. For the interface-fitted grid system, we have had

many applications so far. Miyata et al. [17] adopted structured free-surface-fitted grids to express three-di-

mensional nonlinear waves. Ryskin and Leal [18] and Takagi et al. [19] simulated a single rising bubble in

axisymmetric and three-dimensional coordinates, respectively, by using structured boundary-fitted grids.
Popinet and Zaleski [20] also solved three-dimensional bubble flows, where special attention is laid on

the accurate calculation of surface tension. Braess and Wriggers [21] simulated free surface behaviour by

two-dimensional triangle finite-elements.

In this study, a direct numerical simulation code was developed to solve flow over a moving and dissolv-

ing droplet by using three-dimensional hybrid unstructured meshes. The mesh system consists of triangular

prisms near the interface for the resolution of viscous boundary layer and tetrahedrons in the other part.

The interface between the droplet and the continuous phase moves in the way satisfying both kinematic and

dynamic conditions. The two-phase flow field is discretised by a cell-centred ALE finite volume formula-
tion, utilising the Rhie–Chow�s algorithm [22]. To resolve mass boundary layer thinner than the momentum

boundary layer, we regenerated several additional computational cells named the very thin layers (VTLs)

within one prism layer attached to the interface. The VTLs are used only to solve the mass transfer. The
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objective of this paper is, by this numerical method, to elucidate the correlation mechanism between the

droplet motion and the mass transfer rate at the interface.
2. Numerical procedure

2.1. The governing equations of two-phase flow

This study focuses on a liquid–liquid two-phase system, i.e., the continuous and dispersed phases, under

gravitational fields. The governing equations for this system are the dimensionless continuity equation for

the both phases and the dimensionless Navier–Stokes (NS) equation for each phase with the ALE

description.
r � u ¼ 0 in Xc and Xd; ð1Þ

ou

ot
þr � u� vð Þu ¼ �r/þ 1

Re
r ruþ ruð ÞT
h i

in Xc; ð2Þ

ou

ot
þr � u� vð Þu ¼ � 1
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c
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OhReð Þ2
g in Xd; ð3Þ
where X is the considered three-dimensional region, u is the flow velocity, v is the velocity of coordinates

that move, g is the unit gravitational acceleration vector, (0, 0, �1) in the Cartesian coordinate system,

and / is the modified pressure that excludes the hydrostatic pressure of the continuous phase. Re is the

Reynolds number, Oh is the Ohnesorge number, Eo is the Eötvös number, and c and h are the density

and the viscosity ratios, respectively, of the dispersion phase to the continuous phase. These dimensionless

parameters are defined by
c ¼ qd

qc

; h ¼ ld

lc

; Re ¼ qcUd0

lc

; Eo ¼ � g qd � qcð Þd2
0

r
; Oh ¼ lcffiffiffiffiffiffiffiffiffiffiffiffi

qcd0r
p ; ð4Þ
where q and l are the density and the viscosity, respectively, d0 is the diameter of the initial spherical drop-
let, U is the reference velocity, and r is the interface tension. The subscripts c and d denote the values of the

continuous and the dispersed phases, respectively.

The integral form of the dimensionless mass equation in the both phases and the dimensionless momen-

tum conservation equations in each phase are:
Z
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where V is the volume of X, dA is the area of C, and n is the outward unit vector normal to the surface C.
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In this study, it is assumed that the convection and diffusion of the mass dissolved from the dispersed

phase exists only in the continuous phase. Therefore, the mass transfer expressed by the below equation

is only considered in the cells in the continuous phase.
Z
X

oC
ot

dV þ
Z
C
C u� vð Þ � n dA ¼ 1

ReSc

Z
C
n � rC dA in Xc; ð8Þ
where Sc is the Schmidt number and C is the concentration of the dispersed-phase mass in the continuous

phase. For simplicity, the density of the continuous phase is not affected by the mass dissolved from the

dispersed phase. Therefore, the mass in the continuous phase is passive to the flow field.

2.2. Numerical procedure

In the present method, a MAC-type projection scheme is adopted for solving the system of time-evolu-

tionary equations. The NS equation is split into the following two steps:
û� un

Dt
¼ CONVþDIFF þ BUOY; ð9Þ

unþ1 � û

Dt
¼ �r/nþ1; ð10Þ
where CONV is the convection term, DIFF is the diffusion term, BUOY is the buoyancy term, û is the inter-

mediate velocity, and the superscripts n and n + 1 denote the computational time steps. Here velocity–pres-

sure simultaneous iteration is adopted.
um � û

Dt
¼ �r/m; ð11Þ
where superscript m denotes the iteration number. By taking the divergence of Eq. (11), the Poisson equa-

tion for pressure is obtained
r � û
Dt

¼ r2/m: ð12Þ
Integration in each computational cell gives
1

V

Z
F

r � û� Dtr/mð Þ � n dA ¼ 1

V

X
F

FLUXF ¼ 0; ð13Þ
where FLUXF is the mass flux and the subscript F denotes the values on each cell face. Flux correction is

carried out iteratively until incompressibility is attained. The residual, RES, of Eq. (13) is evaluated by
RES ¼ x

Dt � D�2

X
F

FLUXF ; ð14Þ
where D represents the cell size and x is the relaxation parameter. When RES is smaller than a convergence

criterion after several iterations, the obtained values at the mth iteration becomes the ones at the next time
step. This procedure is continued in time-marching way.

2.3. Spatial discretisation

The present unstructured mesh system consists of triangular prisms near the interface for the sufficient

resolution of boundary layers and of tetrahedrons in the other part, just like the ones used in Parthasarathy

and Kallinderis [23]. For the spatial discretisation of the governing equations, a cell-centred finite volume
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formulation on hybrid unstructured mesh is applied, following the Rhie–Chow�s algorithm [22], the essence

of which appears in the discretisation of the convection term:
Z
F
uu � n dA ¼

X
F

uF � FLUXFð Þ; ð15Þ
where FLUXF is the same as the one computed by Eq. (13), which gives stable computation of incompress-

ible flow in collocated cell-centred grids. To calculate the surface integral in Eq. (15), u on the cell face, uF, is

required. In this study, the cell face values are obtained by using the Taylor series expansion
uF ¼ uP þ ruð ÞF � rPF þO r2PF
� �

; ð16Þ

ruð ÞF ¼ 1þ k
2

ruð ÞP þ
1� k
2

ruð ÞN ; ð17Þ
where k is set to be 2/3 to achieve upwinding third-order accuracy, rigorously in regular grids. The sub-

scripts, P and N, denote the values at the centre of the concerned cell and at the centre of a neighbouring

cell upon the concerned cell face, respectively. rPF is the distance vector from the centre of the concerned
cell, P, to the area-centre of a cell face, F. Fig. 1 schematises this in the case of two-dimensional triangles. In

Eq. (17), velocity gradients on each cell face are obtained by:
ruð ÞP ;N ¼ 1

V

Z
CP ;N

�uF � n dA; ð18Þ

�uF ¼ V NuP þ V PuN

V N þ V P
: ð19Þ
This scheme is similar to the flux-vector-splitting of Batina [24], which was validated by comparing well

with the measurement for the compressible flow over an airfoil.

Since the diffusion term consists of second derivatives, the calculation of first derivatives at cell faces is

required in the cell-centred finite volume formulation. We use a local coordinate system, nk (k = 1, 2, 3), at

each cell face to compute the first derivatives
ouj
oxi

¼ onk
oxi

ouj
onk

¼ J�1bik
ouj
onk

; ð20Þ
P

F= 3

F= 2

F= 1

N= 3

N= 2

r

N= 1

Fig. 1. Schematic sketch of neighbouring cells and a position vector from a cell centre to a cell face.
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where n1 is the direction connecting two cell-centres, and n2 and n3 are the ones between two diagonal nodes

on the cell face, as are shown in Fig. 2. J and bik are the Jacobian and the contravariant metric tensor,

respectively, of the coordinate transformation.

Velocities on nodes, which are required when calculating the gradients along n2 and n3 in Eq. (20), are

obtained by using the single inverse-distance weighting average of the ones at the centres of the surrounding
cells:
uX ¼
P

NwNuNP
NwN

; ð21Þ

wN ¼ 1

jrXN j
; ð22Þ
where the subscript X refers to the value on a target node and rXN is the distance vector from the concerned

node to the centre of the neighbouring cells. It is noted that this procedure is compatible to the way ex-

pressed by Eq. (19). This scheme for the diffusion term gives second-order accuracy in regular grids. This

is also used for calculating second-derivative terms in the mass transfer equation and the Poisson equation

for pressure, Eq. (13).

2.4. Time discretisation

Semi-implicit time integration is used both for the momentum and the mass transfer equations (6)–(8)
1=Dtð ÞI þ b CONVP �DIFFPð Þ½ �qnþ1
P ¼ � 1� bð ÞCONVP þ 1� bð ÞDIFFP½ �qP

þ �CONVX þDIFFX½ �qX ; ð23Þ
where q is a variable vector, I is the unit matrix, and b is an indicator for implicit time integration for cell-

centred values. It is explicit when b = 0 and implicit in the other cases. The second term on the RHS indi-
cates the portions that are computed from nodal values and this is always explicitly computed, whatever b
is, so that it is called ‘‘semi’’-implicit even if b 6¼ 0. This linear equation is solved by the Jacobi iteration at

each time step of the computation.

Since all the evolutional equations are decoupled explicitly and each one is solved implicitly (b = 1) with

respect to time for the cell-centred values and explicitly for those on node points, the computation is not

unconditionally stable. For an explicit method, the time increment between two time steps is limited by

the Courant–Friedrichs–Lewy (CFL) condition, as is shown below:
Dt 6
c1

1
V

P
F �uF � nAF

; ð24Þ
Fig. 2. Schematic sketch of the local coordinates on a cell-face to calculate first derivatives.



Fig. 3. Schematic sketch of the local coordinates of an interface cell. 13 coincides with the direction of the spine, which represents the

kinematic condition of the moving interface.
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Fig. 4. Schematic sketch of the computational domain for flow over a droplet/solid sphere.
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where c1 and c2 are the Courant and the diffusion numbers, respectively. Because the present method is

semi-implicit, it is not necessarily to follow the CFL condition and c1 and c2 can be more than unity. In

this study, they were eventually set at 2.0 after checking computational stability.

2.5. Boundary conditions

The continuities of velocity and stress with the interface tension are imposed as the boundary conditions

on the interface:



Fig. 5. A typical mesh system that shows the prism layers and the VTLs.
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ujc ¼ ujd; ð26Þ
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where j is the interface curvature and Q|c and Q|d are any variable Q defined at the interface on the sides of

the continuous and the dispersed phases, respectively. The direction indicators, n and s, denote the normal

and the tangential components, respectively. The jump condition for pressure on the interface due to the

existence of interface tension is given by Eq. (27), which is used in the Poisson solver for pressure. The tan-

gential stress condition, Eq. (28), is used when calculating the diffusion terms in Eqs. (6) and (7) and, even-

tually, the dynamic condition of the interface is satisfied. Here the tangential gradient of the surface tension

is not considered, in other words, the Marangoni effect is ignored, because it is assumed that the substance

of the dispersed phase directly dissolves into the continuous phase in the present isothermal liquid–liquid
system.

In this study, the dimensionless curvature j is computed at triangle faces of the prism cells on the

interface:
j ¼ r � n ¼ 1

A

Z
nE � dl; ð29Þ
where nE is the unit normal vector to the interface on the edge and dl is the outward vector normal to the

edge on the face plane, the value of which is the length of the edge, and A is the area of the triangle. We

considered two ways in computing nE: the first way is the area-average of the unit normal vectors on the

two neighbouring triangle faces upon the concerned edge. In the second way, the unit normal vectors at
a node, nX, is calculated by taking the area-average of those of all the surrounding triangle faces. Then,

the common average of the vectors at the both ends of the concerned edge gives nE. The second method

is regarded as one more averaging than that in the first and, therefore, should give more smoothed curva-

ture and is adopted in the present study. This was evidenced by a simple test for the unit sphere, the cur-

vature of which is 4.0. The number of the generated triangle cells on the sphere is 590. Since the mesh on the
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spherical surface is not completely smooth by the commercial mesh generator we used, the mean curvature

by the first method is 4.035 and its standard deviation is 0.198, while by the second the mean and its stand-

ard deviation are 3.988 and 0.054, respectively.

For velocities, the uniform flow, the value of which is equal to the rise velocity of a droplet, is given at

the inflow and the zero-gradient Neumann condition is set at the outflow, assuming that these outer bound-
aries are far enough from the droplet and the flow disturbances from the droplet are well diffused numer-

ically there. The no-slip condition is applied to the surface of the wall in the case of a solid sphere. For

pressure, the zero-gradient Neumann condition is applied to the outer boundaries. The standard pressure,

0.0, is given at some cells near the inflow.

The solubility of the dispersed phase in the continuous phase is given as the boundary condition for C on

the interface when solving Eq. (8).
3. Treatment for high Schmidt number flow

3.1. Very thin layers

For high Schmidt number problems, the boundary layer for mass concentration is much thinner than

that of momentum. According to a textbook [25], the thickness of mass boundary layer for flow over a flat

plate can be expressed by a function of the Schmidt number and of the thickness of the momentum bound-

ary layer:
Table

Two g

coeffici

Re

Sc

Diame

Tetrah

Prisms

Cd (ca

Sh (ca
dc ¼
dM

1:026Sc1=3
; ð30Þ

dM ¼ 5:48ffiffiffiffiffiffiffiffi
ReL

p L
2
; ð31Þ
where dC and dM are the thicknesses of mass and momentum boundary layers, respectively, and ReL is the

Reynolds number based on characteristic length L, which is set at d0 in this study.

Based on the above empirical forms, the total thickness of prism layers and the thickness of the first

prism to the interface are set at dM and dC, respectively. In order to resolve the thin mass boundary layer,
we divided one prism layer attached to the interface into VTLs. It should be noted that the VTLs are used

only for solving the mass transfer equation (8), where the velocities in the VTLs are linearly interpolated.
1

rid systems for the flow over a solid sphere at Re = 50 and Sc = 2.5 for checking grid convergence by the calculated drag

ents and the Sherwood numbers

Case I-1 Case I-2 Case I-3

50

2.5

ter of Domain 6 6 10

edrons 14,201 24,778 44,406

(interface cell, layers) 5900 (590 · 10) 9960 (996 · 10) 5900 (590 · 10)

l.) 1.63 1.64 1.64

l.) 7.96 7.95 7.96
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Fig. 6. Calculated local Sherwood number integrated at every latitude of a sphere by using two different mesh systems. The Reynolds

and the Schmidt numbers are 50 and 2.5, respectively.

Table 2

Conditions of simulation for flow over a solid sphere and the calculated drag coefficients

Case II-1 Case II-2 Case II-3 Case II-4

Re 50 100 500 1000

Diameter of domain 6 6 6 6

Tetrahedrons 14,201 14,201 24,778 60,291

Prisms (interface cell, layers) 5900 (590 · 10) 5900 (590 · 10) 9960 (996 · 10) 9960 (996 · 10)

Cd (cal.) 1.63 1.15 0.61 0.53

Re
0 200 400 600 800 1000

C
D

0

1

2

3

24.0/Re+6.0/(1+Re0.5)+0.4 (White,1974)
24(1.0+0.125Re0.72)/Re  (Lapple,1951)
Present calculations
Sirayama (1992)
Schlichting (1979)

Fig. 7. Calculated drag coefficient of a solid sphere versus Reynolds number. Superimposed are the two empirical equations cited in

Clift et al. [27] and the measurement by Schlichting [28], and the calculation by Shirayama [29].
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3.2. Time integral for mass transfer

Since the VTLs are finer than the original prisms for the momentum solver, the time increment used in

solving mass transfer becomes smaller than that for the momentum in the present semi-implicit scheme.

Eventually, within one time step of the momentum solver, the mass transfer proceeds in several time steps.
The time increments for the mass and momentum solvers, DtM and DtC, are determined by Eqs. (24) and

(25), based on the respective mesh sizes, i.e., for the latter the thickness of the VTLs is considered. During

the interval of DtM, only Eq. (8) is solved in a time-marching way by the increment of DtC, while the veloc-
ities remain the same.
4. Moving interface

Description of the moving interface follows:
Fig. 8.

two em
13 ¼ h 11; 12; tð Þ; ð32Þ

where 1i is the local coordinate vector, the direction of which is shown in Fig. 3, t is the time, and h is the

spine function, which is a scalar representing the position of the interface, suggested by Mashayek and Ash-

griz [26]. For a droplet in this study, h is the distance between a node on the interface and the gravity centre

of the droplet. The kinematic condition of the moving interface is given by
oh
ot

¼ U 3 � U 1

oh
o11

� U 2

oh
o12

; ð33Þ

Ui ¼
o1j
oxi

uj ¼ J�1b1ijuj; ð34Þ
where J is the Jacobian of metrics and b1ij is the contravariant metric tensor of the coordinate transforma-

tion. Only the prism layers generated near the interface deform according to the interface movement, i.e.,

the nodes at the interface move in the manner of Eq. (33) and, thereafter, the coordinate location of the rest

nodes of the prism layers is distributed linearly.
Reynolds Number
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(Sh-1)/Sc1/3=[1+(1/ReSc)]1/30.752Re0.472

Sh=1+0.724Re0.48Sc1/3

2+0.6Re1/2Sc1/3

Present Calculations

1

2

3

Calculated Sherwood number in the form of a function of the Schmidt number versus the Reynolds number. Superimposed are

pirical equations cited in Clift et al. [27] and a classical one of Ranz and Marchall [30].
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5. Results and discussions

5.1. Solid sphere in uniform flow

To verify the present numerical algorithm, numerical tests were performed for a flow over a solid sphere,
from which a mass is dissolved into the continuous phase. The schematic view of the domain and an
Table 3

Conditions of simulation for flow over a solid sphere with mass dissolution from its interface

Case III-1 Case III-2 Case III-3

Re 49 136 500

Sc 2.5 2.5 200

Diameter of domain 6 6 6

Tetrahedrons 14,201 14,201 32,925

Prisms (interface cell, layers) 5900 (590 · 10) 5900 (590 · 10) 15,940 (1594 · 10)

VTLs (interface cell, layers) 2950 (590 · 5) 2950 (590 · 5) 7970 (1594 · 5)

Sh (cal.) 7.86 12.07 20.90

The calculated Sherwood numbers are also listed.

Fig. 9. Contour surfaces of mass concentration (upper) and velocity vectors (lower) on the plane sectioning the sphere centre at the

same Reynolds number of 49, but at the different Schmidt numbers, 2.5 (a) and 50 (b).



Fig. 10. Mesh system, the details of which are listed in Case II-3 in Table 2, for the flow over a solid sphere at the Reynolds and the

Schmidt numbers of 500 and 200, respectively, visualised on two vertical planes and the sphere surface. A streamline and the contours

of mass concentration are also shown.

Table 4

Conditions of simulation for flow over a rising silicon droplet in water

Re 826

Sc 2.5

Oh 0.0015

Eo 2.82

c 0.76

h 0.494
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example of the mesh system are shown in Figs. 4 and 5, respectively. In this solid sphere case, we neglect the

buoyancy and, instead, the downward uniflow of 1.0 comes into the domain from the upper boundary.

The mesh information is listed in Table 1, together with the calculated drag coefficients, CD, and the cal-
culated Sherwood number, Sh, at the dimensionless time of 4.36. The Reynolds and the Schmidt numbers

are 50 and 2.5, respectively. It is noted that the differences in the drag coefficient and the Sherwood number

using two mesh systems are less than 1%, comparing Cases I-1 and I-2. The calculated local point-wise

Sherwood numbers on the latitudes of the sphere are plotted in Fig. 6 for both the mesh systems. They

are in very good agreement. Therefore, it is believed that the grid convergence is attained at these particular

Reynolds and the Schmidt numbers. Case I-3 is also considered for checking the domain size dependency in

CD for Re = 50. Since the result is almost the same as that in Cases I-1 and I-2, the computational domain

with the diameter of 6d0 is thought to be wide enough.
Table 2 denotes the numbers of meshes used for the flows at the various Reynolds numbers. The calcu-

lated CD are plotted in Fig. 7 with lines of the empirical equations cited by Clift et al. [27] and with data

measured by Schlichting [28] and those calculated by Shirayama [29]. The present method gives almost

the same results with them. The computational costs of the present method are, in Case II-4, 318 MB in
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memory and 2.7 h per 1 dimensionless time by using CPU with the clock time of 980 MHz. Fig. 8 shows the

calculated Sherwood numbers correlated with the Schmidt number at three sets of the Reynolds and the

Schmidt numbers. The computational conditions are listed in Table 3. The solutions of two empirical equa-

tions cited in Clift et al. [27] and a classical one of Ranz and Marchall [30] are superimposed by solid, bro-
Fig. 11. Comparison of the shapes of a rising silicon droplet in water between the measurement (a) done by Imamura and Katayama

[31] and the present calculation (b) at Oh = 0.0015, and Eo = 2.82. T0 is a period of the sinusoidal trail of the droplet.
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ken, and dash-dot-dotted lines, respectively. It seems that the results of the present calculation are in good

agreement with these empirical equations. Judging from the results shown in Figs. 7 and 8, it is thought that

the present numerical method and the way in determining the size of the prisms and the VTLs, described in

Section 3.1, are validated at the wide range of the Reynolds and the Schmidt numbers.

Fig. 9 shows the contour surface maps and velocity vectors in the wake of the solid sphere on the central
section of the sphere. The height of the contour surface indicates the mass concentration on the sectional

plane. The Schmidt numbers are 2.5 and 50 for (a) and (b), respectively. The Reynolds number is 49 for

both (a) and (b), so that the flow field is the same, because the computation of mass concentration is passive

to the flow field in the present methods. Interestingly, the mass concentration fields in Fig. 9(a) and (b) are

not similar, though the flow is the same. The contours are smooth in Fig. 9(a), where the mass diffusion is

thought to be dominant rather than the flow convection at the lower Schmidt number. On the other hand,

at the higher Schmidt number, the contours seem to match the flow field, in which the concentration is high,

compared with the surroundings near the flow separation corresponding to the existence of a ring vortex, as
is shown in Fig. 9(b).

The convection-dominant tendency in the mass distribution is more obvious as the Reynolds number

becomes higher. Fig. 10 shows the mesh distribution and the contours of the mass concentration on two

perpendicular vertical planes sectioning the sphere centre. An instantaneous streamline is also depicted

in the figure. The Reynolds and the Schmidt numbers are 500 and 200, respectively (Case III-3 in Table

3). It is seen that the separation point locates at about 110� from the leading stagnation point and that

the mass concentration is high just downstream of the separation.
Fig. 12. Comparison of the wake structures of a rising silicon droplet in water between the measurement done by Katayama et al. [32]

(a) and the present calculation (b). Sodium fluorescent is used for the visualisation of the hairpin and ring vortices in the measurement.

The wake structure is visualised by an iso-surface of vorticity in (b) at Rn � 1240, Oh = 0.0015, and Eo = 2.82.
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Fig. 13. Time histories of rise velocity (a), droplet trails in the vertical x–z and y–z planes (b), aspect ratio of the droplet (c), the

maximum vorticity (d), and the Sherwood number (e) at Rn � 1240, Sc = 2.5, Oh = 0.0015, and Eo = 2.82. Two vertical guidelines are

drawn at T = 12.8 and 20.4, between which there is one period of the zigzag trail. Within the guidelines, nine specific timings are chosen

for displaying flow structures, i.e., A, B, C, D, E, F, G, H, and I at T = 12.8, 14.0, 15.0, 15.8, 17.2, 18.4, 19.2, 19.8, and 20.4,

respectively.
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5.2. Rising droplet with mass transfer

Here a free rising silicon (KF-56, Shin-Etsu Chemical Co. Ltd.) droplet in water was simulated. The con-

ditions of the simulation are listed in Table 4. This corresponds to the droplet diameter, d0, of 0.00826 m

and the reference velocity, U, of 0.1 m/s. There are two kinds of the Reynolds numbers: i.e., Re = (qcUd0)/lc
and (Rn = qcURd0)/lc based on the reference velocity, U, and the rise velocity of the droplet, UR, respec-

tively. In this study, the former and the latter are called the set and the rise Reynolds numbers, respectively.

The volume of the droplet does not diminish by dissolution in this case.

The calculated changes in shape of the droplet with respect to time are compared with the experimental

visualisation of Imamura et al. [31] in Fig. 11. The Reynolds number, Rn, based on the time-averaged rise

velocity UR of about 1.5U (as is shown later in Fig. 13(a)) is 1240 in the present calculations, while

Rn � 1300 in the measurement. It is thought that the present method is quantitatively validated in this as-

pect. The calculated shape deformations are very similar to the measurement, although the eye directions in
the experiment and in the calculation are not exactly the same. In Fig. 12, the calculated wake structure

shown by an iso-surface of vorticity behind a rising droplet (b) is compared with the visualisation by means

of sodium fluorescent done by Katayama et al. [32] (a). Although the dye distribution in the measurement

and the vorticity contour in the calculation are different in visualising, ring and hairpin vortices are seen in

the both figures and it is fare to say that the wake structure shown in Fig. 12(a) and (b) are qualitatively in

good agreement.

Fig. 13 shows the time histories of the simulation results, such as the rise velocity (a), the vertical trails

(b), deformation ratio (c), the maximum vorticity (d), and the Sherwood number (e) of the droplet. In addi-
tion, the horizontal trail is shown in Fig. 14, which shows a zigzag trail on a single vertical plane. In Fig. 13,

two guidelines are drawn at T = 12.8 and 20.4, between which there is one period of the zigzag trail. Within

the guidelines, nine specific timings are chosen for displaying flow structures, i.e., A, B, C, D, E, F, G, H,

and I at T = 12.8, 14.0, 15.0, 15.8, 17.2, 18.4, 19.2, 19.8, and 20.4, respectively. These timings are also plot-

ted on the horizontal trail in Fig. 14. At the turning points (A, E, and I) of the trail, the rise velocity has the

maxima and the aspect ratio has the minima. This may be because the droplet suffers large deformation due
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Fig. 14. Trail of a rising droplet on the horizontal (x–y) plane at Rn � 1240, Oh = 0.0015, and Eo = 2.82. The droplet starts at the

origin (0, 0). The alphabetic indicators are the same as those in Fig. 13.
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to high pressure at the leading stagnation corresponding to the maximum velocity. Obviously, the elliptical

shape does not delay the rise speed and, instead, such shape is resulted from the high speed. Spatially, the

maximum vorticity is supposed to be inside the attached boundary layer. As is seen in Fig. 13(d), the vor-

ticity minima exist at A, E, and I. This may be because the droplet has the smaller drag and the rising veloc-

ity is increased, when it has less vorticity generation on the surface.
Another interesting aspect is that the time history of the Sherwood number has a frequency double the

ones of the rise velocity, the shape oscillation, and the maximum vorticity, as is shown in Fig. 13(e). This is

discussed later in Section 5.3. Clift et al. [27] proposed a Sherwood number model for a droplet with spher-

ical-oblate shape oscillation, as follows:
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Fig. 16. Measured mass transfer rate in the form of a function of the Sherwood and the Schmidt numbers from droplets of the two-

phase systems of glycerin–CCl4, glycerin–benzen, water–CCl4, water–benzen, and water–totuln, obtained by Yamaguchi et al. [33].

Superimposed by a solid line is an empirical equation for a solid sphere cited in Clift et al. [27].

Table 5

Conditions of simulation for flow over a rising droplet, corresponding to three different values of interface tension

Case V-1 Case V-2 Case V-3

Re 250

Sc 2.5

Oh 0.0013 0.0020 0.0025

Eo 0.065 0.147 0.229

c 0.76

h 0.494
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St ¼ fd0

U
; ð36Þ
where St is the Strouhal number, f is the frequency of the shape oscillation, and 1 + e is the ratio of max-

imum to minimum surface areas of the droplet that oscillates in shape. When the dimensionless numbers

are the ones shown in Table 4 and the values read from Fig. 13(b) are St � 0.92 and e = 0.025, Eq. (35)

gives the Sherwood number of about 50, which is in good agreement with the numerical results shown

in Fig. 13(e).

In order to see the relationship between the trail and the vortex shedding, the time variations of the con-
tours of the vorticity component perpendicular to the x–y plane are depicted on the plane in Fig. 15. The

drawing timings correspond to the position indicators, A to I, set in Figs. 13 and 14. It is seen that, when the

droplet locates at the turning points, T = 12.8, 17.2, and 20.4, the ring vortex is shed from the droplet. At

these moments, the rise velocity of the droplet increases rapidly and the droplet rises vertically, as are seen

in Fig. 13. Fig. 15 also suggests that, on the way between two turning points, the ring vortex attached to the

droplet is asymmetry. This may let us conjecture that the zigzag motion of the droplet is driven by the pres-

sure unevenly distributed on the rear surface of the droplet. Considering that the zigzag trail is quite planar
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on a single vertical plane, it is also inferred that the vortex shedding and the related uneven pressure dis-

tribution occur in a reciprocal way at the opposite sides on the rear surface of the droplet.

5.3. Effect of interface tension

It is expected that, when a droplet deforms in shape, the way of its rise and the rate of dissolution from it

are different from those of a solid sphere. This was elucidated by Fig. 16, which shows a dimensionless func-

tion of the Sherwood and the Schmidt numbers versus the Reynolds number for a droplet of the two-phase

systems of glycerin–CCl4, glycerin–benzen, water–CCl4, water–benzen, and water–totuln, based on the

measurement done by Yamaguchi et al. [33]. A line is drawn based on an empirical equation cited in Clift

et al. [27] for a solid sphere. It is obvious that the line is far from the measurements.

We simulated the three cases listed in Table 5, where the Ohnesorge and the Eötvös numbers vary

depending on the change of the interface tension, with keeping the other dimensional parameters the same.
The proper dimensionless number to discuss the effects of interface tension should be the Weber number

(We = Oh2Rn2), because droplet deformation is dominated by the inertia, which is resulted from the grav-
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Fig. 17. Time histories of calculated rise velocity and Sherwood number at three different magnitudes of interface tension at almost the

same Rn of about 500. The conditional parameters are listed in Table 5.
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itational effect, as well as interface tension. However, the Weber number consists of Rn, which is based on

the resultant rising velocity, and is not appropriate as a conditional parameter. Therefore, although Oh is

used in the following discussions in this paper, it should be noted that Oh is only a representative of the

interface tension and should be always set with other dimensionless parameters. In Fig. 17, the time histo-

ries of the dimensionless rise velocity and the Sherwood number are denoted. Under these conditions, the
droplet deforms elliptically but does not oscillate distinctly. In Fig. 17(a), the time histories of the rise veloc-

ity at Oh = 0.0020 and 0.0025 oscillate, although that for the highest interface tension does not. It is known

that the lower the interface tension, the more deformable the surface of the droplet is. As a result, the time

histories of mass transfer rate at the interface in Fig. 17(b) also presents oscillations at Oh = 0.0020 and

0.0025. Obviously, these oscillations in mass transfer rate are not because of shape oscillation but of the

time change of rise velocity. It is also observed that the mass transfer rate is given in the opposite order

of the magnitude of the interface tension.

Fig. 18 shows the dimensionless expression of mass transfer rate versus the Ohnesorge number that rep-
resents the interface tension. The error bars in the calculated data at Oh = 0.0020 and 0.0025 show the extr-

ema of the dissolution rate with respect to time. A broken line is plotted based on an empirical equation of

Clift et al. [27] for a solid sphere. It is thought that the difference of mean mass transfer rate becomes larger

as the droplet deforms more. Clift et al. [27] cited the following correlation, obtained by solving boundary

layer equations coupled with external irrotational flow, on the Sherwood number for a spherical droplet at

100 < Re < 1000 and h < 2.
Fig. 18
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where Rn is the rise Reynolds number. In the case that Oh = 0.0025, we can see that UR � 1.8U in Fig. 17(a)

and this gives the Sherwood number of about 33. Although this is a little larger than the computed ones, the

present computation is believed to give moderate dissolution rates, because Eq. (37) is applicable only to

high Schmidt numbers and approximates empirical data that scatter very much.

In order to see the mechanism of the increase in mass transfer rate with respect to the interface tension,

we selected three specific moments during the rise of the droplet, i.e., T = 8.0, 9.0, and 10.0. Fig. 19 shows
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cal equation for a solid sphere cited in [27].



Fig. 19. Time variations of velocity vectors at Oh = 0.0025, Eo = 0.229 (a) and Oh = 0.0013, Eo = 0.065 (b) at T = 8.0, 9.0, and 10.0, at

almost the same Rn of about 500.
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Fig. 21. Time histories of rise velocity (a) and bulk Sherwood number (b) for the density ratios of 0.76 (a) and 0.90 (b) at Re = 250,

Sc = 2.5, Oh = 0.0025, Eo = 0.229, and h = 0.494.
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the time variations of velocity vector fields for Oh = 0.0025 and Oh = 0.0013. At almost the same rise Reyn-

olds number of about 500, the velocity fields in the wake are drastically different depending on the defor-

mation of the droplet. For the lower interface tension, the velocity vectors indicate a transient asymmetric

ring vortex, while a steady weakly asymmetric vortex is attached to the droplet when the interface tension is

high. Fig. 20 shows the time variations of the contours of the dissolved mass in the continuous phase. When
the droplet shape is elliptic for the lower interface tension, the mass concentration on the rear surface is low

at T = 9.0 than those at the other timings shown in Fig. 20(a). This may be due to the sweep of the high

mass concentration by the shed vortices. This certainly accelerates the mass transfer rate near the separa-

tion. Therefore, it is thought that the vortex shedding caused by the droplet deformation for the lower inter-

face tension gives rise to the higher Sherwood number than that for the higher interface tension, where we

have no obvious shed vortices.

In Fig. 13, at the higher Reynolds number, the Sherwood number has half-period oscillations with re-

spect to time compared with that of the rise velocity. This is different from the tendency shown in Fig.
17, where the frequencies of the oscillations of the rise velocity and the Sherwood number almost match.

Both in Figs. 13 and 17, vortex shedding occurs in accordance with the oscillation of the rise velocity with



Fig. 22. Velocity vectors for the density ratios of 0.76 (a) and 0.90 (b) at T = 14.5 at Re = 250, Oh = 0.0025, Eo = 0.229, and h = 0.494.
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respect to time. Therefore, there must be another mechanism for the higher Reynolds number flow for

increasing the dissolution rate other than the vortex shedding. The notable difference between the droplet
behaviour shown in Fig. 13 and that under the conditions of Cases V-2 and V-3 in Fig. 17 (Oh = 0.0020 and

0.0025) is that the former has the obvious shape oscillation with respect to time, not alone the deformation.

It is recognised that, as well as the main frequency the same as that of the rise velocity, the deformation rate

shown in Fig. 13(c) has another small oscillation, which has the frequency almost double of the main. Clift

et al. [27] introduced the natural frequency of a droplet with spherical-oblate shape oscillation, as follows:
StN ¼ 4

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2þ 3c

s
1

Oh Re
: ð38Þ
This gives the frequency of 0.86, which is close to the higher one, St � 0.92, shown in Fig. 13(c). Therefore,

it is believed that the high frequency is due to the shape oscillation and the low main frequency is caused by

vortex shedding, which also dominates the rise velocity oscillation with respect to time. In fact, the Sher-

wood number model shown by Eq. (35) for a droplet with shape oscillation is based on the idea that

new mass is brought to the interface as its area increases and old mass is removed from the interface when
the area decreases. This may explain the Sherwood number oscillation with time. Alternative interpretation

can be given as follows. Since the dissolution on the rear surface is accelerated by the vortex shedding, the

mass transfer rate on the leading side of the droplet may be responsible for the other oscillation. Because

the maxima of the vorticity in Fig. 13(d) are given at the moment when the rise velocity is at the hollows in

Fig. 13(a), the large shear rate may enhance the dissolution from the interface upper to the separation by

refreshing the surrounding water. Further investigation is, however, necessary.
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Fig. 23. Time histories of rise velocity (a) and bulk Sherwood number (b) for the viscosity ratios of 0.494 (a) and 0.988 (b) at Re = 250,

Sc = 2.5, Oh = 0.0025, Eo = 0.229, and c = 0.76.
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5.4. Effect of density and viscosity ratios

The computational conditions to investigate the effect of different density ratio are based on Case V-3 in

Table 5 by changing the density ratio, which has the values of 0.76 and 0.9. The time histories of the rise

velocity and the Sherwood number are shown in Fig. 21. Because the density ratio is closely related to the
rise velocity via buoyancy, this comparison simply gives differences due to the different rise Reynolds num-

bers, which are about 450 and 340 for c = 0.76 and 0.9, respectively. The velocity vectors for the different

density ratios at the dimensionless time of 14.5 are shown in Fig. 22. In Fig. 22(a), there is a ring vortex

attached to the rear surface of the droplet in its wake and not in Fig. 22(b). At the same time, we can ob-

serve a circulation inside the droplet in both figures: the one in (a) locates upper than that in (b). In Fig.

22(a), it is seen that a secondary circulation at the inner bottom of the droplet, probably because of the

existence of the ring vortex outside. Eq. (37) gives the Sherwood number of about 28 in the case of

c = 0.9, which is also larger than the value computed by the present method for the possible reason men-
tioned in Section 5.3. However, the ratio of this to that for c = 0.76 is almost the same as that between the

computed Sherwood numbers for c = 0.76 and 0.9.



Fig. 24. Velocity vectors for the viscosity ratios of 0.494 (a) and 0.988 (b) at T = 14.5 at Re = 250, Oh = 0.0025, Eo = 0.229, and

c = 0.76.
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Next, we saw the effect of viscosity ratio. The computational conditions are, again, given by Case V-3 in
Table 5 except for the viscosity ratios, 0.494 and 0.988. The time histories of the rise velocity and the Sher-

wood number are shown in Fig. 23. There seems to be no significant differences between the two values of

the viscosity ratios both in the rise velocity and the Sherwood number. The velocity vectors for the different

density ratios at the non-dimensional time of 14.5 are shown in Fig. 24. The velocity vectors also do not

suggest main differences, except for the secondary circulations, which are slightly more distinctive in the

case of lower viscosity ratio shown Fig. 24(a) than those in Fig. 24(b). Although the viscosity ratio is con-

sidered in Eq. (37), the discrepancy in the Sherwood number is not large between these cases and both give

Sh of about 33 in significant digits. This does not contradict the discussion in this section.
6. Conclusions

A three-dimensional numerical code for two-phase flow, based on hybrid unstructured moving meshes,

was developed. The newly developed technique in this study is the very-thin-layer cells, which are not used

in computing flow field but in solving mass concentration, to resolve a thin mass boundary layer. For the

momentum computation, explicit time integration is used, while the mass transfer solver adopts semi-im-
plicit method with a smaller time increment than that for the former. We applied it to investigate the move-

ment of a rising droplet in the continuous phase with mass dissolution from its interface.

The drag coefficient and the mass transfer rate of a solid sphere resulted from our numerical simulations

are compared well with measurements and several empirical equations for checking the validity of the pre-

sent method. Thereafter, we applied this method to the movement of the interface. The results indicate the

correlation mechanism among the rise velocity, the zigzag trail, the shape deformation and oscillation of the
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droplet, the vortex shedding from it, and mass transfer through the interface. We also investigated the effect

of interface tension on the mass transfer rate and showed that the smaller the interface tension, the larger

the dissolution from the droplet becomes.
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